f1(0) -> true
f1(1) -> false
f1(s1(x)) -> f1(x)
if3(true, x, y) -> x
if3(false, x, y) -> y
g2(s1(x), s1(y)) -> if3(f1(x), s1(x), s1(y))
g2(x, c1(y)) -> g2(x, g2(s1(c1(y)), y))
↳ QTRS
↳ DependencyPairsProof
f1(0) -> true
f1(1) -> false
f1(s1(x)) -> f1(x)
if3(true, x, y) -> x
if3(false, x, y) -> y
g2(s1(x), s1(y)) -> if3(f1(x), s1(x), s1(y))
g2(x, c1(y)) -> g2(x, g2(s1(c1(y)), y))
G2(x, c1(y)) -> G2(x, g2(s1(c1(y)), y))
G2(s1(x), s1(y)) -> IF3(f1(x), s1(x), s1(y))
G2(s1(x), s1(y)) -> F1(x)
G2(x, c1(y)) -> G2(s1(c1(y)), y)
F1(s1(x)) -> F1(x)
f1(0) -> true
f1(1) -> false
f1(s1(x)) -> f1(x)
if3(true, x, y) -> x
if3(false, x, y) -> y
g2(s1(x), s1(y)) -> if3(f1(x), s1(x), s1(y))
g2(x, c1(y)) -> g2(x, g2(s1(c1(y)), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
G2(x, c1(y)) -> G2(x, g2(s1(c1(y)), y))
G2(s1(x), s1(y)) -> IF3(f1(x), s1(x), s1(y))
G2(s1(x), s1(y)) -> F1(x)
G2(x, c1(y)) -> G2(s1(c1(y)), y)
F1(s1(x)) -> F1(x)
f1(0) -> true
f1(1) -> false
f1(s1(x)) -> f1(x)
if3(true, x, y) -> x
if3(false, x, y) -> y
g2(s1(x), s1(y)) -> if3(f1(x), s1(x), s1(y))
g2(x, c1(y)) -> g2(x, g2(s1(c1(y)), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
F1(s1(x)) -> F1(x)
f1(0) -> true
f1(1) -> false
f1(s1(x)) -> f1(x)
if3(true, x, y) -> x
if3(false, x, y) -> y
g2(s1(x), s1(y)) -> if3(f1(x), s1(x), s1(y))
g2(x, c1(y)) -> g2(x, g2(s1(c1(y)), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
F1(s1(x)) -> F1(x)
POL( s1(x1) ) = 3x1 + 3
POL( F1(x1) ) = 2x1 + 3
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
f1(0) -> true
f1(1) -> false
f1(s1(x)) -> f1(x)
if3(true, x, y) -> x
if3(false, x, y) -> y
g2(s1(x), s1(y)) -> if3(f1(x), s1(x), s1(y))
g2(x, c1(y)) -> g2(x, g2(s1(c1(y)), y))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
G2(x, c1(y)) -> G2(x, g2(s1(c1(y)), y))
G2(x, c1(y)) -> G2(s1(c1(y)), y)
f1(0) -> true
f1(1) -> false
f1(s1(x)) -> f1(x)
if3(true, x, y) -> x
if3(false, x, y) -> y
g2(s1(x), s1(y)) -> if3(f1(x), s1(x), s1(y))
g2(x, c1(y)) -> g2(x, g2(s1(c1(y)), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G2(x, c1(y)) -> G2(s1(c1(y)), y)
Used ordering: Polynomial Order [17,21] with Interpretation:
G2(x, c1(y)) -> G2(x, g2(s1(c1(y)), y))
POL( G2(x1, x2) ) = max{0, x2 - 2}
POL( true ) = 1
POL( if3(x1, ..., x3) ) = x2 + x3 + 1
POL( g2(x1, x2) ) = 3
POL( false ) = max{0, -3}
POL( f1(x1) ) = max{0, -3}
POL( 1 ) = max{0, -3}
POL( c1(x1) ) = x1 + 3
POL( s1(x1) ) = max{0, -3}
POL( 0 ) = max{0, -3}
if3(false, x, y) -> y
g2(x, c1(y)) -> g2(x, g2(s1(c1(y)), y))
g2(s1(x), s1(y)) -> if3(f1(x), s1(x), s1(y))
if3(true, x, y) -> x
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
G2(x, c1(y)) -> G2(x, g2(s1(c1(y)), y))
f1(0) -> true
f1(1) -> false
f1(s1(x)) -> f1(x)
if3(true, x, y) -> x
if3(false, x, y) -> y
g2(s1(x), s1(y)) -> if3(f1(x), s1(x), s1(y))
g2(x, c1(y)) -> g2(x, g2(s1(c1(y)), y))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G2(x, c1(y)) -> G2(x, g2(s1(c1(y)), y))
POL( G2(x1, x2) ) = max{0, 3x1 + 2x2 - 1}
POL( true ) = 1
POL( if3(x1, ..., x3) ) = x2 + 2x3
POL( g2(x1, x2) ) = 0
POL( false ) = 2
POL( f1(x1) ) = 1
POL( 1 ) = max{0, -3}
POL( c1(x1) ) = 2x1 + 1
POL( s1(x1) ) = 0
POL( 0 ) = 1
if3(false, x, y) -> y
g2(x, c1(y)) -> g2(x, g2(s1(c1(y)), y))
g2(s1(x), s1(y)) -> if3(f1(x), s1(x), s1(y))
if3(true, x, y) -> x
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
f1(0) -> true
f1(1) -> false
f1(s1(x)) -> f1(x)
if3(true, x, y) -> x
if3(false, x, y) -> y
g2(s1(x), s1(y)) -> if3(f1(x), s1(x), s1(y))
g2(x, c1(y)) -> g2(x, g2(s1(c1(y)), y))